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Abstract

Does a competitive equilibrium in a matching market provide ade-

quate incentives for investments made before the market when utility

is not perfectly transferable? This paper derives a necessary and suf-

ficient condition for equilibrium investments to maximize surplus con-

ditional on the matching assignment in a one-sided market. Surplus

efficiency of equilibrium payoffs ex post alone is sufficient for surplus

efficient investments only when the equal treatment property holds in

equilibrium. Sufficient (but not full) utility transferability in a well

defined sense ensures this will hold and that a social planner who can

only change investments cannot achieve higher aggregate surplus than

the market.

Keywords: Matching, assignment models, investments, nontransfer-

able utility, graph theory.

JEL Codes: C78, D20, D62.

1 Introduction

Do equilibrium allocations and payoffs in matching markets provide ade-

quate incentives for investments in attributes that are relevant to matching

partners and are made before the market? This is a relevant question, in

∗The author is grateful for valuable comments and discussion to Christian Kellner and

Daniel Krähmer. All remaining errors are, of course, my own.
†University of Southampton, Div. of Economics, School of Social Sciences, Southamp-

ton SO17 1BJ, UK; email: t.gall@soton.ac.uk; phone +44-23-8059-2529.
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particular for policy discussion concerning education acquisition and labor

markets. For instance, there appear to be widespread concerns that – pos-

sibly because of asymmetric information (see Bénabou and Tirole, 2012) –

salaries in the labor market may not adequately reflect the social marginal

benefit of employees’ productivity or human capital, distorting incentives for

education investment. Similarly, when admission to good schools and col-

leges, and thus access to high quality peers in the classroom, is based partly

on parents’ income through user fees or house prices in the presence of bor-

rowing constraints, rewards to prior effort in education acquisition or early

childhood investments will be distorted.

The question has attracted considerable attention in the literature. Cole

et al. (2001b) show that surplus efficient investments are in the equilibrium

set when utility is perfectly transferable.1 At the other extreme, for strictly

nontransferable utility, such that surplus has to be split equally among part-

ners, Peters and Siow (2002) establish Pareto (though not necessarily surplus)

efficiency of investments in a two-sided matching market, though Bhaskar and

Hopkins (2011) points out the limits of this results. On the other hand, Gall

et al. (2006) provide an example of surplus inefficient investments in a one-

sided market when utility is less than perfectly transferable and distorts the

matching pattern. Gall et al. (2009) finds investment distortions generating

surplus inefficiency in form of simultaneous over-investment at the top and

under-investment at the bottom, and analyze rematching policies. Mailath

et al. (2012) examine the relation of the dimensionality of the price system

and potential investment distortions in a two-sided market. This raises the

question of the degree of utility transferability required to ensure that in-

vestments maximize aggregate surplus. Evaluating allocations in terms of

surplus efficiency appears reasonable from a normative, ex ante perspective

(in the sense of Harsanyi, 1953), and from a positive point of view when

surplus relates to output.

In essence, nontransferable utility may distort ex ante investments away

from the surplus maximizing allocation through three possible channels.

First, with non-transferabilities equilibrium payoffs may not maximize joint

1This is approximately true in finite economies (Cole et al., 2001a, Felli and Roberts,

2002).

2



surplus in each match formed in equilibrium. That is, there is ex post in-

efficiency in that given an equilibrium assignment and investments, in some

matches a different division of the surplus may increase joint surplus. Second,

payoff distortions may cause the equilibrium assignment to differ from the

first best. That is, given equilibrium investments and payoffs there may be

another assignment that is not stable but generates higher aggregate surplus,

which may affect incentives. Third, given an equilibrium assignment equi-

librium payoffs may not adequately reflect the externalities that an agent’s

investment generates on potential matches. That is, given the equilibrium as-

signment and payoffs, changing individual investments may generate higher

aggregate surplus.

This paper shall be concerned with the first and the third channel only;

analyzing surplus efficiency of the matching pattern and possible remedies is

done elsewhere (Gall et al., 2009). First, a necessary and sufficient condition

is derived that ensures equilibrium investments are surplus efficient condi-

tional on the matching assignment. This is quite relevant, for instance, if

policy determines the matching pattern. Essentially the condition requires

matching market equilibrium payoffs to coincide with equilibrium payoffs

when utility is fully transferable, which is stronger than requiring that payoffs

maximize joint surplus in each match formed, i.e., ex post surplus efficiency.

Surplus efficiency requires payoffs to reflect the social benefit of invest-

ments in a first best world. A less demanding criterion is whether a social

planner who can change investments, but otherwise remains constrained by

nontransferabilities, can increase aggregate surplus. Indeed, equilibrium mar-

ket prices for attributes correctly reflect the actual externalities (subject to

nontransferabilities) of a rematch triggered by a change in investments if, and

only if, equal treatment holds, that is, each attribute obtains the same payoff

in every equilibrium match, independent of the attribute it is assigned to.

With equal treatment the law of one price holds, and the market payoff for

any attribute in any match reflects the actual opportunity cost of foregoing

a different match for that attribute. Otherwise, some individuals will receive

more than their true opportunity cost, which distorts investments. Hence,

given a matching pattern, a social planner who can affect only individual

investments cannot increase aggregate surplus beyond what is achieved by
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equilibrium investments induced by a matching market equilibrium that sat-

isfies equal treatment. This finding extends to cases where the matching

pattern reacts to changes in investments.

The condition can be readily applied. For instance, one-sided markets

with strictly nontransferable utility (when surplus in a match has to be shared

according to a certain, match-specific ratio, e.g. due to ex post renegotiations)

often have full segregation in equilibrium (i.e. only matches of agents with

the same attributes occur), which trivially implies the equal treatment prop-

erty. Hence, investments in such markets are typically constrained efficient,

conditional on equilibrium assignment and payoffs.2

The equal treatment property can be tied to transferability: a sufficient

condition for equal treatment is that utility is transferable enough to allow

partners in a match to transfer utility to another at a bounded, strictly posi-

tive rate in each possible match of attributes. Strictly nontransferable utility

that yields some heterogeneity in the equilibrium matching typically causes

equal treatment to fail, however. In this case ex post surplus efficiency of

equilibrium payoffs does not imply surplus efficiency of investments. Intu-

itively, when equilibrium payoffs for an attribute differ for different attribute

matches, the externalities generated by an agent’s change in investment is

not correctly reflected in payoffs as the law of one price fails.

The results are derived in a model of ex ante investments, made before a

one-sided matching market with a continuum of agents. Costly investment

determines the probability distribution over possible attributes an agent may

attain. After attributes have realized agents enter the market, match into

pairs, and jointly generate surplus, which depends on attributes. A match-

ing equilibrium is a stable match with side payments, and equilibrium in-

vestments are optimal anticipating the matching equilibrium payoffs. Side

payments are subject to nontransferabilities, captured by the Pareto fron-

tier in each match, which may take any form between fully transferable and

strictly nontransferable utility. Surplus in a match may not be monotone and

transferability may vary between different attribute pairs, allowing for sub-

stantial heterogeneity in preference over possible matches and preferences for

2This extends to two-sided models when both market sides have the same type distri-

bution as in the example of Peters and Siow (2002).
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attributes need not be aligned.3 The results follow from deriving the graph

structure of the payoff externalities of a change in investments and using the

structural properties of an equilibrium match of attributes.

The paper is organized as follows. Section 2 lays out the model and con-

tains a preliminary result when there is full segregation in equilibrium. The

general case is treated in Section 3 deriving the relation of equal treatment

and constrained surplus efficient investments. Section 4 concludes and the

appendix contains proofs and details omitted in the text.

2 A model of matching and investments

An economy is populated by a continuum of agents I of measure one. Agents

are characterized by a type θ ∈ Θ where Θ denotes a finite set of types.

Before the match agents spend effort ei ∈ [e, ē] with 0 ≤ e < ē at cost

c(ei, θ). The cost function is strictly increasing in θ and e, strictly convex

and differentiable in e and satisfies c(e, θ) = 0 for all θ ∈ Θ. An individual’s

attribute a ∈ A, where A denotes a finite set, is stochastic and depends on

effort: exerting effort ei yields probability p(a, ei) of attaining an attribute

a.4 Attribute draws are independent across individuals.

Assumption 1 (Investment Technology). Suppose that

(i) for all ei ∈ [e, ē],
∑

a∈A p(a, ei) = 1 and p(a, ei) > 0 for all a ∈ A

(probability distribution with full support),

(ii) p(a, ei) is strictly monotone, concave, and differentiable in ei for all

a ∈ A,

For instance, if A = {a0, a1} an investment technology that satisfies this

assumption is p(a0, ei) = ei with ei ∈ [ϵ, 1− ϵ] for ϵ ∈ (0, 1/2).5

3See also Dizdar (2012) for a recent extension of the efficiency result by Cole et al.

(2001b) to multidimensional types and allowing for payoffs that are not supermodular.
4This reduces the problem of multiple equilibria due to coordination failure as noted

by Bhaskar and Hopkins (2011) and has been used e.g. in Gall et al. (2009).
5The form of p(a, ei) is chosen for simplicity. Using a technology that allows to choose

a portfolio of efforts, e.g. one for each attribute with a resource constraint, appears not to

affect the derivation of the results below.
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Invoking a law of large numbers, denote the realized measure of an at-

tribute a ∈ A in the matching market given investments e = (ei)i∈I by

q(a, e) =

∫
i∈I

p(a, ei)di.

Once attributes have realized agents match into pairs. Unmatched agents

obtain payoff 0, and a matched pair of agents (i, j) jointly generates surplus

of at most y(ai, aj). Note that no order is imposed on A, that is, y(a, a′)

may not be monotone in its arguments, thus potentially allowing for multi-

dimensional attributes. In most relevant applications expected surplus will

monotonically increase as own effort investment increases, assume therefore∑
a∈A

y(a, a′)
∂p(a, ei)

∂ei
> 0 for all a′ ∈ A. (1)

Aggregate surplus in a match (i, j) may depend on its division among part-

ners (for instance due to moral hazard problems in the match, limited liabil-

ity, or behavioral concerns), so that individual payoffs ui and uj satisfy

ui ≤ ϕ(ai, aj, uj) with ui + ϕ(ai, aj, uj) ≤ y(ai, aj).

ϕ(ai, aj, uj) is the Pareto or utility possibility frontier in a match (i, j), giv-

ing i’s maximum payoff when j receives uj given attributes ai and aj (the

notation follows Legros and Newman, 2007). Suppose ϕ(ai, aj, uj) is contin-

uous and weakly decreases in uj with ϕ(ai, aj, 0) > 0 and ϕ(ai, aj, u) = 0

implies u > 0 for all ai, aj ∈ A. Since transferability may depend on the

match of attributes (a, a′) some combinations may allow for full transfer-

ability, while others do not. This may be a source of gains from trades, as

more transferability with some partner than with another may compensate

for lower maximal joint surplus. Since the market is one-sided, partners in

a match may switch roles so that the Pareto frontier has to be symmetric,

ϕ(a, a′, u) = ϕ(a′, a, u).

To see that ϕ(.) captures the degree of payoff transferability in a match,

note that full transferability of utility corresponds to

ϕ(a, a′, u) = y(a, a′)− u, for 0 ≤ u ≤ y(a, a′).
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At the other extreme is strictly nontransferable utility, e.g., if joint surplus

has to be shared at a ratio δ ∈ [1/2, 1]. Then ϕ(a, a′, uj) = δy(a, a′) for

uj ≤ (1−δ)y(a, a′), and ϕ(a, a′, uj) = (1−δ)y(a, a′) for (1−δ)y(a, a′) < uj ≤
δy(a, a′). The ratio could, of course, depend on the match.

Equilibrium Concept

A matching market equilibrium (u∗,P∗) are payoffs u∗ = (u∗
i )i∈I and a par-

tition P∗ of I into pairs preserving the measures of attributes q(a, e), such

that there are no agents i, j ̸= i ∈ I with (i, j) /∈ P∗ and payoffs ui, uj such

that ui ≤ ϕ(ai, aj, uj) and both ui > u∗
i and uj > u∗

j . Measure consistency

ensures the measure of first members of matched attribute pairs (a, a′) equals

the measure of the second one. An investment cum matching equilibrium are

investments e∗ = (e∗i )i∈I and a matching market equilibrium (u∗,P∗) given

the measures of attributes q(a, e) induced by e, such that no individual i ∈ I

can obtain strictly higher expected payoff given the matching equilibrium

(u∗,P∗) choosing investment e′i ̸= e∗i .

Since matching is into pairs in a continuum economy, existence of a stable

match is guaranteed (see for instance Kaneko and Wooders, 1986), determin-

ing individual payoffs given investments. This means that the investment

stage is, in fact, an anonymous game, for which existence of an equilib-

rium has been established, for instance, by Mas-Colell (1984). Note that

the investment cum matching equilibria relies on rational expectations of the

matching equilibrium payoffs given aggregate investments. Therefore there

may be multiple investment cum matching equilibria. Whether a matching

equilibrium maximizes total surplus given the realized attributes depends on

the properties of y(a, a′) and ϕ(a, a′), see e.g. Legros and Newman (2007).

An equilibrium partition P∗ characterizes an assignment of attributes µ

that maps A into its power set, defined by µ(a) = {aj : ai = a ∧ (i, j) ∈ P∗}
for all a ∈ A. Denote the measure of an attribute pair (a, a′) implied by µ

by ρ(a, a′). Measures ρ(a, a′) are determined by the system of equations

q(a, e) =
∑

a′∈µ(a)

ρ(a, a′) + 2ρ(a, a) for a ∈ A. (2)

Some form of rationing may be required when µ(a) has more than one
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element for some a. Assume that agents are assigned randomly with proba-

bilities implied by the relative frequencies of matches (a, a′) with a′ ∈ µ(a):

an agent with attribute a is assigned to an agent with attribute a′ with

probability ρ(a, a′)/q(a, e).

For example, let A = {a1; a2} and suppose the matching equilibrium is not

full segregation. If e.g. q(a1, e) > q(a2, e), µ(a1) = {a1; a2} and µ(a2) = a1,

measure of matches are ρ(a1, a2) = q(a2, e), ρ(a1, a1) = q(a1, e)−q(a2, e), and

ρ(a2, a2) = 0. Matching probabilities are then ρ̂(a1, a2) = q(a2, e)/q(a1, e)

and ρ̂(a1, a1) = 1− ρ(a2, a1), and ρ̂(a2, a1) = 1 and ρ̂(a2, a2) = 0.

Note that, when utility is not fully transferable, equal treatment may

fail. A matching market equilibrium satisfies the equal treatment property,

if each attribute obtains the same payoff no matter which other attribute it

is matched to, i.e.

v(a) = ϕ(a, a′, v(a′)) for all a ̸= a′ ∈ A with ρ(a, a′) > 0. (ET)

In case this fails even for homogenous matches (a, a), that is, two agents i

and j with the same attribute obtain different equilibrium payoffs u∗
i ̸= u∗

j

when matched together, assign equal probability to each possible equilibrium

payoff division in a match.

Equilibrium Investments

An agent’s equilibrium payoff given attribute a can be written as

v(a) =
∑
a′∈A

ρ(a, a′)E[ϕ(a, a′, u∗
a′)],

where u∗
a′ denotes equilibrium payoff u∗

j for an agent j with aj = a′ in a

match (a, a′) and the expectation is with respect to u∗
a′ in case equal treat-

ment fails for a homogenous match (a, a). Anticipating the market outcome

agents choose effort investments. An agent i’s choice of ei therefore solves

maxei
∑

a∈A p(a, ei)v(a)− c(ei, θi). The equilibrium effort choice e∗i satisfies∑
a∈A

v(a)
∂p(a, e∗i )

∂ei
=

∂c(e∗i , θi)

∂ei
. (3)

E.g., if surplus has to be shared equally, ρ(a, a) = 1 and u∗
a = ϕ(a, a, u∗

a)

implies that v(a) = y(a, a)/2.
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Surplus Optimal Allocation

Compare this to effort investments that maximize aggregate surplus if a

social planner can choose investment levels and the surplus sharing to ensure

ui + uj = y(ai, aj) in all matches (i, j) when the matching is given by µ(a).6

The social planner solves

max
(ei)i∈I

∑
a∈A

(
ρ(a, a)y(a, a) +

1

2

∑
a′ ̸=a∈A

ρ(a, a′)y(a, a′)

)
−
∫
I

c(ei, θi)di. (4)

The optimization is over the investments e of a continuum of individuals, but

note that the type space Θ is finite and the investment cost convex, while

expected payoffs are the same for all individuals. Therefore all individuals i

of the same type θi will necessarily have the same investment ei in optimum,

and the optimization is really only over a finite vector of investments.

Measures ρ(a, a′) depend on q(a, e), and thus on e, through (2). If the

equilibrium assignment µ remains constant, measures ρ(a, a′) are differen-

tiable with respect to q(a, e) and thus with respect to ei. However, a marginal

change in investment e may trigger a change in the equilibrium assignment

µ, adding or subtracting a match (a, a′) with surplus y(a, a′), thus altering

(2) defining the measures ρ(a, e). This will induce a discrete change in the

marginal social benefit of investment. Focus for now on cases such that a

marginal change of investments e does not affect µ. Call such equilibrium

assignments static. Then investments that solve (4) must satisfy for each

i ∈ I

∑
a∈A

(
∂ρ(a, a)

∂ei
y(a, a) +

∑
a′ ̸=a∈A

∂ρ(a, a′)

∂ei

y(a, a′)

2

)
=

∂c(ei, θi)

∂ei
(5)

Since the first derivative of expected surplus (1) decreases in investment ei,

as p(a, ei) is concave in ei, (5) is sufficient as well, given the matching µ(a).

6If one is interested in surplus maximizing investments constrained on equilibrium

payoffs, i.e. taking joint surplus in each match as given by the equilibrium payoffs, it

suffices to substitute maximal surplus y(a, a′) with equilibrium surplus ŷ(ai, aj) = u∗
i +u∗

j

for all ai ∈ µ(aj) in the optimization problem.
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Full Segregation

For instance, if surplus has to be split equally, matching takes the form of

full segregation, µ(a) = a for all a ∈ A. If this remains the equilibrium

assignment for any investments e, then investments are surplus efficient if,

and only if, investments e∗i given by (3) satisfy condition (5). Under full

segregation ρ(a, a) = q(a, e∗)/2 and ρ(a, a′) = 0 for all a ̸= a′ and (5) becomes∑
a∈A

y(a, a)

2

∂p(a, ei)

∂ei
=

∂c(ei, θi)

∂ei
.

On the other hand, equal sharing of surplus implies that
∑

a∈A(
y(a,a)

2
−

v(a))∂p(a,ei)
∂ei

= 0. Hence, if full segregation is an equilibrium and equal sharing

of expected surplus maximizes joint surplus in each match (a, a), the social

planner cannot increase aggregate surplus by choosing different investments

or adjusting sharing rules. Therefore investments are surplus efficient. The

following proposition sums up the argument.

Proposition 1 (Full Segregation). Given an assignment of attributes µ(a) =

a and payoffs u∗, equilibrium attribute investments coincide with surplus max-

imizing investment levels if, and only if,∑
a∈A

(
y(a, a)

2
− E[ϕ(a, a, u∗

a)]

)
∂p(a, ei)

∂ei
= 0 for all i ∈ I,

This is implied by E[ϕ(a, a, u∗
a)] = y(a, a)/2 for all a ∈ A.

The condition that equal division of the payoff is surplus efficient in a

match of agents with equal attributes seems likely to be satisfied in many

relevant applications. The following counterexample demonstrates that it

may fail, however, although rather extreme assumptions are needed.

Example: moral hazard in partnerships

Assume that in a match (i, j) revenue R(ai, aj) is realized with probability

g(xi, xj), depending on individual effort choices xi and xj as follows:

g(xi, xj) = xα
i x

1−α
j .
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Let α ≥ 1/2. Exerting effort an agent i incurs utility cost x2
i /2. In a match

agents may contract on the share s of the revenue that goes to i, but do not

use monetary transfers, e.g. due to liquidity constraints. Hence,

ui = sxα
i x

1−α
j R(ai, aj)− x2

i /2 and uj = (1− s)xα
i x

1−α
j R(ai, aj)− x2

j/2.

Individual optimal effort choice pins down effort levels depending on s, xi(s)

and xj(s). Therefore individual payoffs depend also on s and are given by

ui(s) = s(αs)α((1− α)(1− s))1−α(1− αs/2)R(ai, aj)
2 and

uj(s) = (1− s)(αs)α((1− α)(1− s))1−α(1− (1− α)(1− s)/2)R(ai, aj)
2.

That is, sharing rule s determines a pair of ui and uj and thus the joint

surplus in match (i, j). This can be used to construct the Pareto frontier,

ϕ(ai, aj, u) = argmax
s

ui(s) s.t. uj(s) ≥ u.

Denote the sharing rule that maximizes joint surplus in a match (i, j) by

s∗ = argmaxs ui(s) + uj(s), and the maximum joint surplus by y(ai, aj) =

ui(s
∗) + uj(s

∗).

On the other hand, denote the sharing rule that allows equal sharing of

the joint surplus, such that that ui(ŝ) = uj(ŝ), by ŝ. Sharing the joint sur-

plus equally also maximizes joint surplus if and only if the effort investment

problem is symmetric, i.e. ŝ = s∗ if, and only if α = 1/2.

Figure 1 depicts ϕ(ai, aj, u) for three different matches (a, a), (a, a′), and

(a′, a′) with a > a′. The 45◦ line pins down payoffs for equal sharing and the

dashed lines indicate the surplus maximizing payoff sharing.

Suppose that µ(a) = a in equilibrium (this is implied by e.g. R(a, a) −
R(a, a′) sufficiently high for all a > a′, see Appendix). To check the condition

in Proposition 1, note that, whenever α > 1/2, for all a ∈ A

y(a, a)/2− E[ϕ(a, a, u∗
a)] = κ(α)R(a, a)2,

for a constant κ(α) > 0 depending only on α. Therefore investments are

not surplus efficient unless the investment technology (∂p(a, ei)/∂ei) exactly

compensates the differences κ(α)R(a, a)2.
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Figure 1: Utility Possibility Frontiers

Hence, a social planner who could enforce a different surplus distribution

than equal sharing can increase aggregate surplus. Suppose that sp = ŝ + ϵ

is enforced for each match (i, j). If R(a, a) − R(a, a′) is sufficiently high

for all a > a′ full segregation remains the equilibrium outcome and thus

ui(s
p) + uj(s

p) > ui(ŝ) + uj(ŝ) for all matches (i, j). This decreases the

difference y(a, a)/2−E[ϕ(a, a, u∗
a)] and increases both aggregate surplus and

investments.

3 Heterogeneous Matches

Allow now for equilibrium assignment of attributes µ that do not induce full

segregation, i.e. µ(a) ̸= a for some attribute a. Now changing investments

also changes the expected equilibrium match of at least some attributes,

affecting either only the measure of matched attribute pairs ρ(a, a′) while µ

remains unchanged, or affecting both ρ(.) and µ.

The set of attributes and measures ρ(.) define an undirected, weighted

graph G with a set of vertices A, a set of edges E = {(a, a′) : a′ ∈ µ(a)},
and the weights of edges (a, a′) given by ρ(a, a′). Let C denote the set of

connected components in G. For instance, if surplus has to be shared equally
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(i.e. δ = 1/2), this implies µ(a) = a (full segregation) and equilibrium payoffs

u∗
i = y(ai, ai)/2. Therefore each vertex a ∈ A has only one edge, (a, a), and

is a connected component, so that the set of components is C = A.

Here we limit our attention to graphs whose connected components c ∈ C

have at most as many edges as vertices. Uniqueness of the matching equi-

librium implies this property. Otherwise, the surplus maximizing matching

market equilibrium given attributes necessarily has this property. See ap-

pendix for details on this and the next statement. Denote the sets of vertices

and edges in c by Ac and Ec. This then implies the following fact.

Fact 1. In a graph G associated to an equilibrium assignment µ such that

|Ec| ≤ |Ac| for each connected component c, in each connected component

either

(i) there is exactly one vertex a ∈ Ac with a ∈ µ(a) and c does not contain

a cycle, or

(ii) a /∈ µ(a) for all a ∈ Ac and |Ac| = |Ec|, then c contains one cycle of n

vertices {a1; ...;An} and edges (an, a1) and (ai, ai+1) for i = 1, .., n− 1,

or

(iii) a /∈ µ(a) for all a ∈ Ac and |Ac| > |Ec|, then c has vertices {a1; ...;An}
and edges and (ai, ai+1) for i = 1, .., n− 1.

That is, for each component either |Ac| = |Ec| and c contains a cycle or

an edge (a, a) (which is a cycle of length 0), or |Ac| > |Ec| and c has at least

two terminal vertices.

This observation can be tied to whether or not the equilibrium assignment

µ will respond to a change in investments e. Recall that edge weights ρ(.)

are defined by the system of equations (2). |A| > |E| is equivalent to G

having a component with vertices {a1; ...;An} and edges and (ai, ai+1) for

i = 1, .., n− 1. Then for this component the weights solve

ρ(ai, ai−1) = q(ai)− ρ(ai+1, ai) for i = 2, ..., n− 1, and

ρ(a1, a2) = q(a1) and ρ(an−1, an) = q(an).
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This means
n∑

i=0

(−1)i+1q(ai, e) = 0.

Therefore a marginal change of investments e, changing measures q(a, e) in

turn, will typically violate the condition and the equilibrium assignment µ

must change (adding new or removing old matches at a0 or an) in response

to a change in investments. This yields the following statement.

Fact 2. If, and only if, in the graph G associated to an equilibrium assign-

ment µ the number of vertices strictly exceeds the number of edges, |A| > |E|,
then a marginal change in investment e implies that µ is no longer an equi-

librium assignment.

The following definition characterizes equilibrium assignments µ that do

not change in response to a marginal change in investments.

Definition 1. An equilibrium assignment µ is static if the number of edges

in the graph G induced by µ at least equals the number of vertices.

Intuitively, whenever component c contains as many edges as vertices, it

contains a cycle or a vertex a ∈ Ac with a ∈ µ(a), so that any marginal change

in measures q(a, e) can be accommodated by adjusting weights of edges in

the cycle, or ρ(a, a), without needing to adjust the graph. In particular, the

assignment µ(a) = a for all a ∈ A, i.e. full segregation as above, is static.

For instance, suppose that A = {a1; a2} and the equilibrium assignment

is µ(a1) = {a1; a2} and µ(a2) = a1, inducing ρ(a1, a2) = q(a2)/q(a1). Then

graph G contains one connected component, G, which in turn contains two

edges and two vertices. A marginal change in e marginally changes q(a1) and

q(a2), and therefore ρ(a1, a2), but any change in ρ(a1, a2) is counterbalanced

by ρ(a1, a1) = 1 − ρ(a1, a2). If the equilibrium assignment is µ(a1) = a2

and µ(a2) = a1, however, the single connected component of G contains only

one edge (a1, a2), but two vertices. Then a marginal change in e changes

q(a1) and q(a2) and, since
∑ ∂p(ai,ei)

∂ei
= 0, the matching given by µ, with

ρ(a1, a2) = 1/2 relying on q(a1, e) = q(a2, e), becomes impossible.
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3.1 Static Assignments

Focus for now on static equilibrium assignments µ. In this case (5) is a suf-

ficient and necessary condition for a solution of the social planner’s problem

(4). The LHS of (5) can be decomposed into the set of disjoint connected

components C, since by definition ρ(a, a′) = 0 for any a ∈ Ac and a′ /∈ Ac:∑
c∈C

∑
a∈Ac

(
∂ρ(a, a)

∂ei
y(a, a) +

∑
a′ ̸=a∈Ac

∂ρ(a, a′)

∂ei

y(a, a′)

2

)
.

The following analysis will distinguish between cases (i) and (ii) of Fact 1.

Case 1: no cycles

Start with case (i), i.e. focus on a component c that contains exactly one

a ∈ Ac with a ∈ µ(a); denote it by a0. Define the distance d(a, a′) of two

vertices a, a′ ∈ c by the number of edges in the shortest path connecting

them, e.g. d(a, a′) = 1 if and only if a′ ∈ µ(a). Let n = maxa∈Ac d(a0, a) the

maximum distance from vertex a0. Define by Ac
i = {a ∈ Ac : d(a0, a) = i}

the set of vertices that have common distance i from a0. Figure 2 shows an

example.
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Figure 2: Example for a component c with one vertex a0 that links to itself.

The effects of a change of investments on attributes in component c,

σc =
∑
a∈Ac

(
∂ρ(a, a)

∂ei
y(a, a) +

∑
a′ ̸=a∈Ac

∂ρ(a, a′)

∂ei

y(a, a′)

2

)
can be derived by summing up the effects on each match (a, a′) in c ordered

by their distance from a0:

σc =y(a0, a0)
∂ρ(a0, a0)

∂ei
+

n∑
i=1

∑
ai∈Ac

i

∑
ai−1∈Ac

i−1∩µ(ai)

y(ai−1, ai)
∂ρ(ai−1, ai)

∂ei

 .

15



Let ai ∈ Ac
i and ai−1 ∈ Ac

i−1. Then ρ(ai−1, ai) = q(ai, e) if ai is a terminal

vertex, i.e. µ(ai) = ai−1, and for ai, i ≥ 1, that are not terminal vertices

ρ(ai−1, ai) = q(ai, e)−
∑

ai+1∈µ(ai)∩Ac
i+1

ρ(ai, ai+1).

Finally, ρ(a0, a0) = µ(a0)/2−
∑

a1∈Ac
1
ρ(a0, a1). These observations imply

σc =
y(a0, a0)

2

∂p(a0, ei)

∂ei
+
∑
a1∈Ac

1

(
y(a0, a1)−

y(a0, a0)

2

)
∂p(a1, ei)

∂ei

+
∑
a2∈Ac

2

∑
a1∈Ac

1∩µ(a2)

(
y(a1, a2)− y(a0, a1) +

y(a0, a0)

2

)
∂p(a2, ei)

∂ei
+ ...+

+
∑

an∈Ac
n

∑
an−1∈An−1∩µ(an)

(
y(an−1, an)− ...(−1)n

y(a0, a0)

2

)
∂p(an, ei)

∂ei
.

Define the “externality” that vertices closer to a0 have on those further apart

by

x(ai) = y(ai−1, ai)− x(ai−1) for i = 1, ..., n, (6)

and x(a0) = y(a0, a0)/2. Then

σc =
y(a0, a0)

2

∂p(a0, ei)

∂ei
+

n∑
i=1

∑
ai∈Ac

i

∑
ai−1∈Ac

i−1∩µ(ai)

(y(ai−1, ai)− x(ai−1))
∂p(ai, ei)

∂ei

.

(7)

To verify whether surplus efficient investments coincide with equilibrium

investments recall that the latter were determined by∑
c∈C

∑
a∈Ac

v(a)
∂p(a, e∗i )

∂ei
=

∂c(a, e∗i )

∂ei
.

Hence, for each component c

σc =
∑
a∈Ac

v(a)
∂p(a, e∗i )

∂ei

is equivalent to

n∑
i=1

∑
ai∈Ac

i

∑
ai−1∈Ac

i−1∩µ(ai)

(y(ai−1, ai)− x(ai−1)− v(ai))
∂p(ai, e

∗
i )

∂ei


+

(
y(a0, a0)

2
− v(a0)

)
∂p(a0, e

∗
i )

∂ei
= 0. (8)
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This is implied by v(ai) = y(ai−1, ai)−x(ai−1) for all ai ∈ AC
i and ai−1 ∈ Ac

i−1

for all distances i = 1, ..., n. Since by definition x(ai) = y(ai−1, ai)− x(ai−1),

this means that

v(ai) = y(ai−1, ai)− v(ai−1) for i > 0, and v(a0) = y(a0, a0)/2, (9)

implies (8). Note that (9) characterizes the equilibrium payoffs supporting a

stable matching under fully transferable utility. Hence, if equilibrium payoffs

do not coincide with the payoffs in a matching market equilibrium under

fully transferable utility, the condition v(ai) = y(ai−1, ai) − x(ai−1) will fail

for some attributes. Unless distortions for some attribute aj with j > i

exactly compensate this, (8) will fail. Note that even if for some attributes

ai and aj the respective distortions in payoff exactly offset each other, this

will no longer be the case for a slight change of ∂p(a,ei)
∂ei

, that is, a marginal

perturbation of the investment technology.

Case 2: cycles

The case when c has a cycle is a generalization of the one above, by allowing

for cycles that have length greater than 0. Define the distance dc(a) of a

vertex a ∈ Ac to the cycle by the number of edges in the shortest path

connecting them, e.g. dc(a) = 0 if and only if a is part of the cycle. Let

n = maxa∈Ac dc(a) the maximum distance from the cycle. Define by Ac
i =

{a ∈ Ac : dc(a) = i} the set of vertices that have common distance i from

the cycle. Figure 3 shows an example.
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Figure 3: Example for a component c with a cycle (vertices a0, a
′
0, and a′′0).

Again the effects of a change of investments on attributes in component

c, σc can be derived by summing up the effects on each match (a, a′) in c
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ordered by their distance from the cycle:

σc =
∑
a0∈Ac

0

∑
a′0∈µ(a0)∩Ac

0

y(a0, a
′
0)

2

∂ρ(a0, a
′
0)

∂ei

+
n∑

i=1

∑
ai∈Ac

i

∑
ai−1∈Ac

i−1∩µ(ai)

y(ai−1, ai)
∂ρ(ai−1, ai)

∂ei

 .

Let ai ∈ Ac
i and ai−1 ∈ Ac

i−1. Then ρ(ai−1, ai) = q(ai, e) if ai is a terminal

vertex, i.e. µ(ai) = ai−1. ρ(ai−1, ai) = q(ai, e)−
∑

ai+1∈µ(ai)∩Ac
i+1

ρ(ai, ai+1) and

for vertices a0 and a′0, a
′′
0 ∈ µ(a0) in the cycle, it must hold that ρ(a0, a

′
0) +

ρ(a0, a
′′
0) = µ(a0)−

∑
a1∈µ(a0)∩Ac

1
.

Denote by n0 = (|Ac
0| + 1)/2 the maximum distance between any two

vertices on the cycle. Then the “externality” that vertices closer to a0 have

on those further apart can be expressed as

x(a0) =
1

2

n0−1∑
i=0

(−1)i
∑

a,a′∈Ac
0: d(a,a0)=d(a

′,a0)−1

y(a, a′), (10)

and using the definition of x(ai) above,

σc =
∑
a0∈Ac

0

x(a0)
∂p(a0, ei)

∂ei
+

n∑
i=1

∑
ai∈Ac

i

∑
ai−1∈Ac

i−1∩µ(ai)

(y(ai−1, ai)−x(ai−1))
∂p(ai, ei)

∂ei

.
(11)

This expression coincides with (7) if Ac
0 = a0, i.e. a cycle of length 0.

To verify whether equilibrium investments satisfy (5) note again that for

each component c

σc =
∑
a∈Ac

v(a)
∂p(a, e∗i )

∂ei

is equivalent to

n∑
i=1

∑
ai∈Ac

i

∑
ai−1∈Ac

i−1∩µ(ai)

(y(ai−1, ai)− x(ai−1)− v(ai))
∂p(ai, e

∗
i )

∂ei


+
∑
a0∈Ac

0

(x(a0)− v(a0))
∂p(a0, e

∗
i )

∂ei
= 0. (12)
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Note that (12) becomes (8) if the cycle only has one edge (a0, a0). Here

v(a0) = x(a0) holds if payoffs v(a0) solve the system of equations

v(a0) = y(a0, a
′
0)− v(a′0) for all a0, a

′
0 ∈ Ac

0 with a0 ∈ µ(a′0).

Repeating the argument made above, if equilibrium payoffs do not coincide

with the payoffs in a matching market equilibrium under fully transferable

utility, the conditions v(ai) = y(ai−1, ai) − x(ai−1) or v(a0) = x(a0) will

fail for some attributes. These arguments are summarized in the following

proposition.

Proposition 2 (Static Assignments). Suppose an equilibrium assignment µ

is static. Then equilibrium investments coincide with the ones chosen by a

surplus maximizing social planner if, and only if,

∑
c∈C

n∑
i=1

∑
ai∈Ac

i

∑
ai−1∈Ac

i−1∩µ(ai)

(
x(ai)− ϕ(ai−1, ai, u

∗
ai−1

)
) ∂p(ai, e

∗
i )

∂ei


+
∑
c∈C

∑
a0∈Ac

0

(x(a0)− v(a0))
∂p(a0, e

∗
i )

∂ei
= 0,

where x(ai) is defined by (6) and (10).

This condition is satisfied if equilibrium payoffs u∗ coincide with equilib-

rium payoffs under fully transferable utility (ϕ(a, a′, u) = y(a, a′)− u).

That is, if equilibrium payoffs coincide with those under perfectly trans-

ferable utility, then the equilibrium allocation coincides with the one chosen

by the social planner. Otherwise, distortions in incentives that arise for

some equilibrium matches of attributes typically matter in aggregate. In

case payoff distortion for different attributes happen to exactly compensate

each other, surplus efficiency is not robust to a marginal perturbation in

the investment technology p(a, ei). Note that Proposition 2 implies Proposi-

tion 1. The following examples illustrates Proposition 2 and emphasizes the

condition may fail despite surplus efficiency of equilibrium payoffs.

Example: Heterogenous Matches

Let A = {a0; a1} and assume that surplus has to be shared according to

sharing rule ua = δ(a, a′)y(a, a′) and δ(a, a′) = 1− δ(a, a′). Let δ(a, a) = 1/2
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for all a ∈ A for the sake of simplicity. Suppose that µ(a0) = {a0; a1} and

µ(a1) = a0, to keep the notation similar to the one used above (the reverse

case is analogous). This is consistent with a matching market equilibrium if

y(a1, a1)

2y(a0, a1)
≤ δ(a1, a0) ≤ 1− y(a0, a0)

2y(a0, a1)
. (GDD)

The condition in Proposition 2 becomes(
y(a0, a1)−

y(a0, a0)

2
− δ(a1, a0)y(a0, a1)

)
∂p(a1, ei)

∂ei

+

(
y(a0, a0)

2
− y(a0, a0)

2

)
∂p(a0, ei)

∂ei
= 0.

Note that here y(a0, a1)−y(a0, a0) gives the social marginal benefit of turning

an a0 attribute into an a1 attribute (since p(a0, ei) = 1 − p(a1, ei)), i.e.,

exchanging an (a0, a0) match for an (a0, a1) match. Since utility is perfectly

transferable in (a, a) matches the condition reduces to

[1− δ(a1, a0)]y(a0, a1)
∂p(a1, ei)

∂ei
=

y(a0, a0)

2

∂p(a1, ei)

∂ei
.

This holds if and only if ∂p(a1,ei)
∂ei

= 0, which would imply p(a, ei) is a constant,

or

δ(a1, a0) = 1− y(a0, a0)

2y(a0, a1)
.

Therefore, in this example ex ante investments e are surplus efficient given

matching µ if, and only if, δ(a, a′)y(a, a′) coincide with payoffs under fully

transferable utility. Otherwise by (GDD) δ(a1, a0) is “too small”, inducing

over-investment in attribute a0. Then a social planner can change investment

levels without changing the matching pattern µ and induce higher aggregate

surplus. This cannot induce a Pareto improvement, however.

The failure to induce efficient investments despite ex post surplus effi-

ciency of equilibrium payoffs in the example is due to the failure of the equal

treatment property in the example. To see this suppose that the equal treat-

ment property holds, i.e. v(ai) = ϕ(ai, aj, u
∗
j) for all aj ∈ µ(ai) for all ai ∈ A.

Denote the joint payoff in a match of attributes a and a′ by

ŷ(a, a′) = v(a) + v(a′).
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Then v(ai) = ŷ(ai−1, ai) − v(ai−1) for ai ∈ Ac
i and ai−1 ∈ Ac

i−1 ∩ µ(ai) for

distances i = 1, .., n in component c of the graph G. Moreover, v(a0) with

a0 ∈ Ac
0 solve

v(a0) = ŷ(a0, a
′
0)− v(a′0) for all a0, a

′
0 ∈ Ac

0 with a0 ∈ µ(a′0).

Then the condition in Proposition 2 is satisfied if, and only if, y(a, a′) =

ŷ(a, a′) for all a, a′ ∈ A such that a′ ∈ µ(a). Note that this result is robust to

a perturbation of the investment technology p(a, ei). This means that if an

equilibrium assignment µ is static and the equal treatment property holds for

equilibrium payoffs u∗, then equilibrium investments coincide with the ones

chosen by a surplus maximizing social planner for any investment technology

p(a, ei) if, and only if, equilibrium payoffs u∗ are surplus efficient ex post, i.e.

y(a, a′) = v(a) + v(a′) for all a, a′ ∈ A with a′ ∈ µ(a). This means that

whenever the equal treatment property holds, a social planner who cannot

alter the sharing of surplus nor the match, cannot increase aggregate surplus

by changing investments.

Corollary 1. Suppose an equilibrium assignment µ is static and the equal

treatment property holds for equilibrium payoffs u∗. Then investments e∗ are

surplus efficient if, and only if, equilibrium payoffs u∗ maximize joint surplus

in each match.

The following statement gives a relation between the primitives in form

of the degree of utility transferability and the equal treatment property for

equilibrium payoffs, details are in the appendix.

Proposition 3 (Equal Treatment Property). The equal treatment property

holds in a matching market equilibrium (µ, u∗) if ϕ(a, a′, u) is continuous and

differentiable in u and for all a, a′ ∈ A for u ∈ [0, ϕ(a, a′, 0)

0 <
∂ϕ(a, a′, u)

∂u
< −∞.

The condition in the proposition implies that for any match (a, a′) and

given some feasible sharing of surplus, marginally increasing the surplus of

one agent marginally decreases the surplus of the other agent, independently

of whether this decreases or increases joint surplus. Note that this property
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is implied if partners in match can exchange utility at a bounded, positive

rate for every feasible division of surplus.

That is, if utility is transferable at the margin at any feasible surplus

sharing, a matching market equilibrium will have the equal treatment prop-

erty, and equilibrium investments will be surplus efficient constrained on the

match µ and partners’ joint surpluses implied by equilibrium payoffs u∗.

3.2 Non-static Assignments

Focus now on equilibrium assignments µ that are not static and contain a

component c satisfying case (iii) of Fact 1. A change of investments e and the

subsequent changes in q(a, e) trigger a change in the equilibrium assignment

µ, since there is no cycle in c to adjust to balance any excess or shortfall of

attributes. Then the marginal benefit from investment may jump at e∗. This

is because changing investment will decrease the measure of some matches

and increase the one of some other. Increasing or decreasing investment will

typically affect different kind of matches, however. Surplus efficiency requires

that the social marginal cost of investment lies between the different social

marginal returns of increasing or decreasing investment. Hence, there will be

a set of efficient investment levels.GFED@ABCa0 oo // GFED@ABCa1 GFED@ABCa0((
��
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Figure 4: Graphs for an assignment µ that is not static (left), and for the

corresponding assignments µ (middle) and µ (right).

For instance, let A = {a0, a1} and y(a1, a1) > y(a0, a1) > y(a0, a0). Sup-

pose that µ(a0) = a1 and µ(a1) = a0 for equilibrium investments e∗. Let

p(a1, ei) increase in ei. Then decreasing investments generates assignment

µ with µ(a0) = {a0; a1} and µ(a1) = a0. Increasing investments generates

µ with µ(a0) = a1 and µ{a0; a1} = a1. Figure 4 shows these assignments.

Using (11) this implies that investments e∗ defined by q(a0, e
∗) = q(a1, e

∗)
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are surplus efficient if, and only if,

[y(a1, a1)−y(a0, a1)]
∂p(a1, e

∗
i )

∂ei
≤ ∂c(e∗i, θi)

∂ei
≤ [y(a0, a1)−y(a0, a0)]

∂p(a1, e
∗
i )

∂ei
.

(13)

This condition is satisfied by a variety of investment choices. To check

whether equilibrium investments e∗ satisfy the above condition, recall that

e∗ is given by
∑

a∈A v(a)∂p(a, e∗i )/∂ei = ∂c(e∗i , θi)/∂ei for each i ∈ I. This

and (13) imply that equilibrium investments are efficient if, and only if,

y(a1, a1)−y(a0, a1) ≤ v(a1)− v(a0) ≤ y(a0, a1)−y(a0, a0).

Since q(a0, e
∗) = q(a1, e

∗) is a stable match, equilibrium payoffs v(a) have

to satisfy v(a0) ≥ v(a0) and v(a1) ≥ v(a1) where v(a) and v(a), denote the

equilibrium payoffs for attribute a0 and a1 in assignments µ and µ. Therefore

v(a1)− v(a0) ≤ v(a1)− v(a0) ≤ v(a1)− v(a0).

Hence, investments e∗ such that q(a0, e
∗) = q(a1, e

∗) are surplus efficient iff

y(a1, a1)−y(a0, a1) ≤ v(a1)− v(a0) and

v(a1)− v(a0) ≤ y(a0, a1)−y(a0, a0).

If the equal treatment property holds for assignments µ and µ the above

condition is clearly satisfied whenever ϕ(ai, aj, v(aj)) = y(ai, aj)− v(aj) and

ϕ(ai, aj, v(aj)) = y(ai, aj) − v(aj) for all ai, aj ∈ A. That is, under equal

treatment investments are surplus efficient if equilibrium payoffs maximize

the joint surplus in each match in assignments µ and µ.

Again, surplus efficiency of payoffs v(.) and v(.) is necessary, but not

necessarily sufficient for surplus efficient investments. See the appendix for

an counterexample where payoff maximizes joint surplus ex post, but the

equal treatment property does not hold.

The logic in this simple example extends to more general settings as stated

in the following proposition, the details are in the appendix. For each type θ

denote by µθ (µθ
) the equilibrium assignment that arises if all agents of type

θ increase (decrease) their investment ei.
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Proposition 4. Suppose an equilibrium assignment µ is not static. If the

equal treatment property holds for payoffs for all equilibrium assignments µ
θ

and µθ, then surplus efficiency of equilibrium payoffs associated to the equi-

librium assignments implies that equilibrium investments are surplus efficient

for any investment technology.

The following theorem summarizes Propositions 2, 3, 4, and Corollary 1,

and gives the main result of this paper.

Theorem 1 (Surplus Efficiency of Ex Ante Investments). Suppose that utility

is sufficiently transferable in the sense that for all a, a′ ∈ A ϕ(a, a′, u) is

differentiable in u and

0 >
∂ϕ(a, a′, u)

∂u
> −∞ for u ∈ [0, ϕ(a, a′, 0)].

Then equilibrium investments are constrained surplus efficient, so that a so-

cial planner cannot increase aggregate surplus by changing only investments.

4 Discussion and Conclusion

This paper has shown that competition in large matching markets induces

ex ante investments that are surplus efficient constrained on the equilibrium

assignment for reasonably general investment technologies if, and only if,

equilibrium payoffs in all matches coincide with payoffs under fully transfer-

able utility. Otherwise a social planner could increase aggregate surplus by

marginally adjusting individual investments and forcing marginally different

sharing of surplus in matches, while maintaining the equilibrium assignment.

Moreover, ex post surplus efficiency of equilibrium payoffs is a sufficient

condition for surplus efficient investment only if equilibrium payoffs satisfy

the equal treatment property. This property holds if utility is transferable

enough to enable partners in any match to transfer utility at a finite, strictly

positive rate for any division of surplus. Indeed, this induces sufficient flex-

ibility in market payoffs to enable the accurate pricing of all externalities

generated by an agent’s investment choice given the limitations in utility
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transferability. In this case a social planner cannot increase aggregate sur-

plus by changing individual investments alone, even when payoffs are not

surplus efficient ex post.

One particular case that necessarily satisfies equal treatment in equilib-

rium is when the matching equilibrium takes the form of full segregation

generating only homogenous matches. In this case ex post surplus efficiency

of payoffs implies surplus efficiency of investments conditional on the equilib-

rium assignment. Whenever the equilibrium assignment involves heteroge-

neous matches, however, equal treatment need not be the case, in particular

when payoffs have to be shared according to fixed ratios, for instance because

of renegotiations.

Many of the efficiency results derived above are conditional on the equilib-

rium assignment of agents. While leaving open the possibility of coordination

failure as a consequence of rational expectation (explored e.g. by Bhaskar and

Hopkins, 2011, in a two-sided framework), this has some interesting implica-

tion when the matching of individuals is used as a policy tool, for instance

in form of affirmative action or team formation. Such policies will therefore

yield constrained efficient investments, conditional on the matching that is

imposed and the degree of transferability. Indeed, Gall et al. (2009) exam-

ines the effects of such policies on ex ante investments and their aggregate

consequences.

A Mathematical Appendix

Details for example: moral hazard in partnerships

Optimal effort choices xi(s) and xj(s) depend on s and satisfy

xi(s) = (αs)
1+α
2 ((1− α)(1− s))

1−α
2 R(ai, aj) and

xj(s) = (αs)
α
2 ((1− α)(1− s))

2−α
2 R(ai, aj).

The sharing rule s∗ that maximizes joint payoff ui(s) + uj(s) solves

max
s

(αs)α((1− α)(1− s))1−αR(ai, aj)
2[1− (αs2 + (1− α)(1− s)2)/2].
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Note that the surplus maximizing sharing rule s∗ is a function of α but not

of R(a, a), and s∗ = 1/2 if and only if α = 1/2. Maximal surplus in match

(i, j), y(ai, aj) = ui(s
∗) + uj(s

∗) is

y(ai, aj)=(αs∗)α((1−α)(1−s∗))1−α2−α(s∗)2+(1−α)(1−s∗)2

2
R(ai, aj)

2.

Setting ui(ŝ) = uj(ŝ) implies ŝ = 1/2 if α = 1/2 and otherwise

ŝ =
1 + α−

√
(1 + α)(2− α)

2α− 1
.

Indeed ŝ = 1/2 = s∗ for α = 1/2. Otherwise s∗ > ŝ since the sum ui(s)+uj(s)

strictly increases in s at s = ŝ.

Finally, to check the condition in Proposition 1, compute the difference

in y(a, a)/2 = (ui(s
∗) + uj(s

∗))/2 and ui(ŝ) = uj(ŝ) = ϕ(a, a, u∗
a):

y(a, a)

2
− ϕ(a, a, u∗

a) =
y(a, a)

2

(
ŝ

s∗

)α(
1− ŝ

1− s∗

)1−α
2− αŝ2 − (1− α)(1− ŝ)2

2− α(s∗)2 − (1− α)(1− s∗)2
.

Since neither s∗ nor ŝ depend on R(a, a) the difference is a constant fraction

of R(a, a)2.

Note that a sufficient condition for full segregation in equilibrium for any

sharing of surplus is that the maximum utility attribute a can obtain when

matching with a′ < a falls short of sharing the surplus in a (a, a) match, that

is, if for all a, a′ ∈ A with a′ < a(
s

ŝ

)1+α(
1− s

1− ŝ

)1−α
2− αs

2− αŝ
<

(
R(a, a)

R(a, a′)

)2

, (14)

where s = argmaxs ui(s),

s =
4 + 2α + α2 −

√
(2− α)(8− 6α2 − α3)

6α
.

Note that (14) holds whenever the additional revenue generated by another

high attribute R(a, a)−R(a, a′) is sufficiently great for all attributes.

Edges and Vertices

A necessary condition for a unique matching equilibrium µ(.) is that |Ec| ≤
|Ac|. Otherwise the system of equations

q(a, e) =
∑

a′∈µ(a)

ρ(a, a′) + 2ρ(a, a) for a ∈ Ac (15)
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has a solution ρ1 such that ρ1(a, a
′) = 0 for some a, a′ ∈ Ac. Since all

matches defined by µ cannot be blocked by other matches as µ is a matching

equilibrium, the assignment defined by ρ1 must be a matching equilibrium as

well, with µ1 ̸= µ. Hence, |Ec| ≤ |Ac| is a necessary condition for uniqueness

of µ.

Suppose a matching equilibrium µ such that |Ec| > |Ac|. Then the max-

imal surplus choosing ρ satisfying (15) can be achieved by a choice of ρ with

ρ(a, a′) = 0 for some a, a′ ∈ Ac. Otherwise ρ can still be changed such that

surplus weakly increases, since if there is a change of ρ that strictly decreases

total surplus there must an opposite change that increases total surplus.

Finally, suppose that a matching equilibrium satisfies the equal treatment

property and has |Ec| > |Ac|. Then choosing ρ such that ρ(a, a′) = 0 for

some a, a′ ∈ Ac will not alter payoffs since by the equal treatment property

all attributes are indifferent between all their matches.

Proof of Fact 1

(i) Let a component c of G induced by an equilibrium assignment µ contain

some a such that a ∈ µ(a). Suppose that c also contains a cycle. Then

|Ec| > |Ac|, since a cycle has as many edges as vertices. The same argument

can be applied to the case of c containing some a′ ̸= a with a′ ∈ µ(a′) thus

establishing the first statement.

(ii) If a /∈ µ(a) for all a ∈ Ac and c can be a chain or cycle. Suppose the

latter then |µ(a)| = 2, since otherwise the number of edges would exceed the

number of vertices in c.

(iii) Suppose a /∈ µ(a) for all a ∈ Ac and c is a chain, that is c contains

some terminal node a, i.e. µ(a) = a′ with a ̸= a′. This implies that |Ac| >
|Ec|.

Proof of Proposition 3

Suppose the condition in the proposition holds, but equal treatment in equi-

librium does not. Then in equilibrium there is an attribute ai with ak, aj ∈
µ(ai) such that ϕ(ai, aj, u

∗
j) > ϕ(ai, ak, u

∗
k). But then an agent with attribute

ai who is matched to an agent with an attribute ak, and an agent with an
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attribute aj who is matched to an agent with attribute ai, find it both strictly

profitable to match together if there are payoffs ϕ(ai, ak, u
∗
k) + ϵi with ϵi > 0

for the one with ai and u∗
j + ϵj with ϵj > 0 for the one with aj, such that

ϕ(ai, ak, u
∗
k) + ϵi ≤ ϕ(ai, aj, u

∗
j + ϵj).

Since ϕ(ai, aj, u
∗
j) > ϕ(ai, ak, u

∗
k) by assumption, condition (A) is ensured if

the function ϕ(ai, ak, u) is continuous in u and strictly decreasing with a slope

bounded away from −∞. Noting that ϕ(a, a′, u) is non-increasing in u by

definition, this is implied by the condition in the proposition.

Example when the assignment is not static

Turn now to an example where deviating matchings µ and µ do not involve

homogenous matches. For this let A = {0; 1; 2} and assume that y(a, a′) =√
a+ a′. Let p(1, ei) = p(2, ei) = ei/2 and suppose c(ei, θi) = θie

2 and set

θi = 1/2 for all i ∈ I.

Surplus can be split equally in homogenous matches but has to be shared

according to rule δij between attributes ai and aj. Suppose that in a matching

equilibrium µ(0) = 2 and µ(2) = 0, and µ(1) = 1. Since investments are

pinned down by equilibrium payoffs (δ02
√
2 +

√
2/2)/2− (1− δ02)

√
2, δ02 =

1/2 + 4/(9
√
2) ensures that e∗ = 2/3 which in turn ensures that q(0, e∗) =

q(2, e∗).

Stability requires δ02
√
2 ≥ 1, which is true. Suppose moreover that δ01 >√

2/2 but (1− δ02)
√
2 > 1− δ01, and that (1− δ12)

√
3 >

√
2/2 but δ02

√
2 >

δ12
√
3 ≥ 1 (that is, 1 agents prefer 0 and 2 agents over 1 agents but 0 and 2

prefer each other).

These assumptions imply also that increasing investment yields additional

(1, 2) matches, decreasing investment yields additional (0, 1) matches. Hence,

investments are surplus efficient if, and only if

[y(0, 2)− y(1, 2)]
∂p(0, e∗i )

∂ei
+ [y(1, 2)− y(1, 1)]

∂p(2, e∗i )

∂ei
≤ 2/3

2/3 ≤ [y(0, 1)− y(1, 1)]
∂p(0, e∗i )

∂ei
+ [y(0, 2)− y(0, 1)]

∂p(2, e∗i )

∂ei
.

Using the functional forms defined above reveals that the second condition

fails. Hence, there is over-investment, in the sense that decreasing invest-
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ments ei will increase aggregate surplus in the new matching market equilib-

rium corresponding to the decreased investments.

Proof of Proposition 4

Denote by G and G the graphs associated to µ
θ
and µθ, and their set of

connected components by C and C. Equilibrium investments e∗ are surplus

efficient if for each i ∈ I of type θ

∂c(e∗i , θ)

∂ei
∈

∑
c∈C

σc,
∑
c∈C

σc

 , (16)

using the expression derived above for σc for each connected component of

the graphs G and G (note both graphs G and G will be typically static).

Since the cost is strictly convex
∑

c∈C σc <
∑

c∈C σc.

Stability of the assignment µ generating a cycle in component c implies

that for all a ∈ A

v(a) ≥ ϕ(a, a′, v(a′)) for all a′ ∈ A.

This implies in particular that for all agents i of type θ

∂c(e∗i , θ)

∂ei
∈

∑
c∈C

∑
a∈c

v(a)
∂p(a, e∗i )

∂ei
,
∑
c∈C

∑
a∈c

v(a)
∂p(a, e∗i )

∂ei

 , (17)

where v(a) and v(a) denote the equilibrium payoffs in matchings µ
θ
and

µθ as defined above. Since investment cost is convex,
∑

a∈A v(a)
∂p(a,e∗i )

∂ei
<∑

a∈A v(a)
∂p(a,e∗i )

∂ei
.

Efficiency of investments in any matching equilibrium that is not static

therefore requires that∑
c∈C

σc ≤
∑
a∈A

v(a)
∂p(a, e∗i )

∂ei
and

∑
a∈A

v(a)
∂p(a, e∗i )

∂ei
≤
∑
c∈C

σc. (18)

Note that by the arguments above lower and upper bounds coincide if equi-

librium payoffs coincide with those when utility is perfectly transferable.

Otherwise the investment technology has to exactly offset any distortions.

Corollary 1 implies that if the equal treatment property holds for equilib-

rium payoffs in matches µ and µ surplus efficiency of equilibrium payoffs

implies that both conditions in (18) hold with equality.
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